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Effects of random motions on critical point measurements: Liquid-gas systems in microgravity
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The effects of random accelerations on the measurements of quantities in the vicinity of the liquid-gas
critical point are considered when the system is in a microgravity environment. These accelerations couple to
the order parameter through the transverse component of the velocity field, whose dynamics are also governed
by critical point properties of the liquid-gas system. The action of the accelerations is amplified by the singular
static and dynamic response of the gas-liquid system. A general formulation, based on “model H” critical
dynamics allows for the calculation of a variety of quantities. It is found that the random accelerations expected
in a microgravity environment will not compromise the accuracy of any experiment that is currently envi-
sioned.

PACS numbe(s): 05.40:+j, 64.60.Ht

[. INTRODUCTION ena. An accurate experimental determination of the critical
properties of a simple gas-liquid system represents a strin-
Space-based laboratories present the researcher with 88nt, possibly decisive, experimental test of some of the

systems of current interest can be investigated with unpre@S SOMe of the most influential ideas about the behavior of

edented accuracjl]. Among the most important of those interacting systems—that have been developed in the past
systems are liquids having a critical or multicritical point. It four decades.

has been known for a long time that the variations in the. -:-h? enw][onme_tntt_ln al sp;fac?-bz_irshed Iaborat(;ry IS nottﬁn-
pressure of a liquid sample due to the Earth’s gravitationa]Irey ree of gravitational etlects. 1here are, of course, the
orces due to the gravitational interactions between all the

attraction impose the ultimate limit on the accuracy of any

measurement of critical point properties in an earthboundi'natter on the space craft. Mugh more |mportar.1tlly, random
laboratory [2]. The effects of gravity are especially pro- accelerations, which are unavoidable in an orbiting labora-

nounced for the very important and widely studied quuid-gastory' give rise to effective gravitational-like forces. Unlike

critical point of a single chemical component, which corre—thet tEharths gratvhltelltlonal field tﬂlesle f_(t)rt(;]es f:gctutate n time,
sponds to the termination of the coexistence curve separati ey nevertneless can act to imit the uilimaté precision

the liquid and vapor phasdg]. For this system, the order ith which critical point measurements can be performed. In
parameter couples directly to the gravitational field. GiventhIS paper, we present the TeS“'tS of a study of the effects .Of
luctuating linear and rotational accelerations on the static

the formal correspondences that follow from the universalityf dd . f 2 simpl liquid svstem in the i diat
of critical behavior, the liquid-gas critical point is effectively anc .tynarfm.cts 0 f.it.s'”l‘p e 9?5"th9' s;t/sdem in the |mtmetr:a €
identical to that of a uniaxial ferromagnet whose Curie—pointv'c'n'y or 1ts critical point. IS study represents the
behavior has been disrupted by the action of a spatially vary=". . . A )
ing, externally generate(? magzetic field P y yfltlhzed here is to be contrasted with the calculation of Fer-
The potential benefits of improved measurements of criti-reII [9].’ Who . ut|I_|zed an approximate, s_elf_-con5|stent
cal point properties in simple gas-liquid systems are proﬂUCtuatIOH-dISSIpatIOI’] relation to obtain predictions for the
found. These systems represent the first discovered examngectS dOf tratﬂdom Illneardactge_ltera\t;\(/)ns 4 on Ithe wave-vectorf—]
of critical point behaviof3]. They are also exemplars of a hepten. (Ia dn (larma con SC i fy ’ elt eV?boF; an tgpplroac
broad class of systems. The exponents that quantify the critF— a BI/'e tshal argf]er hum elr O't results, albeit n- the long-
cal behavior of simple gas-liquid systems should also appl;yva_\lfﬁ eng 'ItOW]: :ﬁ_qutehncy |tr_n| .I vsis will b lied t
to analogous behavior in uniaxial ferromagnets and antifer;, "5 € results ot this theoretical analysis will be appiied to
romagnets at the Curie and &leaints, two-component mix- the ° He critical point, which is now being considered as a

tures at the demixing transition, and the Ising mddél This model qugid-gas system for StUdY in a space e'nviron'ment
last system is, in itself, extremely important. The mathematillo]'.twe f|n_d that thte rglllndo;n motions _exp?r(]:ted In a mlcrof-
cal simplicity of the Ising model's Hamiltonian allows for grav:cy enw:)(?nmen Wi nto compromise the accuracy o
relative ease of renormalization-group-based anal{S]s any forseeable experiment.

Monte Carlo simulation$6], and high and low-temperature | orprREING FORCES DUE TO RANDOM MOTIONS
expansiong7]. Because of this, the predicted values of the OF THE APPARATUS

critical exponents of the simple gas-liquid universality class

in three dimensions are the most precise and reliable of all The critical dynamics of a liquid-gas system are con-
nonexact theoretical results in the study of critical phenom4rolled by the transversg.e., divergence-fréecomponent of
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53 EFFECTS OF RANDOM MOTIONS ON CRITICAL POINT ... 4491

the velocity field. An essential stage in the assessment of thienplicit in this result is the assumption that the longitudinal
effects of small random motions on the critical properties ofcomponent of the velocity field is effectively constant
a liquid-gas system is, thus, to determine the exact manner ithroughout the container.

which random linear accelerations and rotations couple to Random rotations of a container will also give rise to
the transverse velocity field. We will find that there are foureffective forces on the liquid-gas system contained therein.
such couplings, each of which can produce an effect on th&he most important of these are the Coriolis forces. The

critical point properties. general form of such forces is
As our first step, however, it is necessary to consider the
effect of small fluctuations in the linear velocity of the sys- Fc=20QXv. (2.9

tem on the purely longitudinali.e., irrotational velocity ) o )
field. If a container suffers only linear accelerations then then this case there is direct coupling to the transverse compo-

most reasonable assumption that one can make is that tRnt of the velocity field. The transverse component of the
fluid contained in it translates with the container as if it wereCoriolis force given by Eq(2.5), with v=v, is, in Fourier

a solid body. However, near its critical point a fluid is highly SPace,
compressible, and because of that its velocity can vary con-
siderably from point to point. Furthermore, the system has

nor_mgl modes that can, in principl_e, be resonantly excited if:inally the component of the rotational veloci€y that is
variations in the container's motion have the proper fre- ' both vi(k) and v(k)—denoted by
t 1(K)—

transverse to
—couples the longitudinal and transverse velocity fields.

guency. Such a resonant excitation of modes could, in pring
ciple, lead to a tremendous amplification of the effects Ohat is, the transverse velocity field responds to an effective
rce given by

small accelerations. This issue is addressed in the next seg;
tion. Resonant excitation of normal modes does not occur in
the parameter range_of_lnterest in th!s__study. HOV\_/ev_er, be- Faa=2(Q, XV)), 2.7
cause of the nonvanishing compressibility of the liquid-gas
system, modes will be nonresonantly excited. The lowestyhile the longitudinal velocity field is subject to the effective
lying modes will be the most strongly excited by this mecha+grce
nism.

Linear accelerationenly couple directly to the longitudi- Fin=2(Q, XV,). (2.9
nal component of the velocity field. There are two ways in
which the purely longitudinal inertial forces induced by lin- Note that the forcd-; can be thought of as “direct,” in that
ear motion of the container indirectly perturb the transversét does not depend directly on the velocity fields. By contrast,
component of the velocity field. First, the effective gravita-the forcesF,, F3, andF,, 4, which have a linear depen-
tional force can have a transverse component, as the result dénce orv, are “parametric” in form.

Fa=2Q-k(kXv,)/K2. (2.6)

fluctuations in the mass densip(x,t). In “Fourier space” As it turns out, the forcé-;, which is central to Ferrell's
this component can be written as calcuations, does not play a role in our approach.
Fi(k,t)=T(k)- (@t)p(k,1)), (2.1) Il. MOTION OF FLUID IN A VIBRATING CONTAINER

wherea(t) is the fluctuating linear acceleration of the con-  The next step in the assessment of the effects of random
tainer, and the projection operatof, with elements motions of a container is to determine the response of the
Ti; (k) = 8; — kik; /K?, selects the transverse part of the iner-fluid to thpse motions. T_o simplify the discussion (_)f the _ef—
tial force a(t)p(x,t). This is the coupling that gives rise to fects of linear accelerations, we assume a one-dimensional
the perturbations calculated by Ferf@l. A second coupling geometry. The linearized hydrodynamical equations that con-
of the linear accelerations to the transverse velocity is via th&ol the evolution of the velocity field (x,t) and the mass
convective contribution,(- V)v, to the total time derivative ~densityp(x,t) are
of the velocity in its equation of motiofsee Eq(A8c)]. We )
begin by writing v ,9p [ 9V

por = ~LpoBsl "o+ 1 =7, 3.1

(V-V)v=3Vu2—vX(V XV). (2.2
ap ov

Decomposing the velocity field into transverse and longi- o Pogxe
tudinal componentsy; andv,, we find that the only contri-
bution to the convective part of the time derivative that has avhere p. is the equilibrium fluid density, taken to be the

(3.2

nonzero transverse component is critical density,8s is the isentropic compressibility, ang is
the viscosity. In terms of the shear viscosify and the bulk
Vi X (V XVy). (2.3)  viscosity 7,, 5 = 9,/3+ 7,.
If we write
The transverse contribution to the effective force associated )
with Eq. (2.3 can be extracted in Fourier space. It is v(X,y)=vge' ey, (3.33

Fa(k,t) = —vi(K) (v -K). (2.9 p(x,y)=Ape e, (3.3b
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then Egs(3.1) and(3.2) become L
f v(X,t)dx
_ ikAp . -t
_vaopoz_ PO,B -k 7 0V0, (34) L —iwt
S _ .
=V ReJ’,LCOE{kRXjL'k'x)dx—cos(kRLJrile)
iwAp:ikpol)o. (35) it
These two equations imply the following dispersion relation: =2V RE{ kR+ik|tadkRL+'k'L) '
K iwkZy VR e "' sinkgL coskgL +i sinfk L coshk L
2 — = " "
W™= Poﬁs+ %0 =0. 3.9 kgt ik, coskgL + sintfk L
3.13
Solving for the wave vectok,
If w7<<1 in the vicinity of the resonance, then the amplitude
- [ poBew? of the velocity goes as
1-iwBsn w?7L/c
2 2 2. (3.19
[(wlc)? [wL/c—(n+1/2) 7]+ (wTL/C)
1-ioT Now, the linear dimension of a container in the kind of
=Kn+ik . (3.7  low-temperature experiment likely to be performed in a mi-

In the equation above= 8.7 is the relaxation time and the

undamped sound velocity is given by

c=11poBs. (3.9

Suppose now that we are interested in the behavior of thg
velocity field inside a steadily vibrating container. The most
equations ofV

general solution to the one-dimensional

motion—the time dependence being sinusoidal with angulal

frequencyw—is
v(x,t)= [Aeikafklx_,_ Be ikrx+ k|X]e*iwt

+[Ce*ikRX*k|X+ DeikRX+k|X]eiwt. (39)

If we impose the following boundary conditions on the

velocity field at the ends of the container,xat =L,
v(L,t)=v(—L,t)=Vcoswt, (3.10

then the coefficients in Eq3.9) must take on the following
values:

Vv

A=B=  Cotkal Tk L)’ (3.113
Vv

c=D (3.11h

" 4 cogkal—ik,L)"
The velocity field inside the container-L<x<L) is

cog kgx+ik;x)

cog kgL +ikglL) |’ (312

v(x,t)=V Re{ei‘”t

The denominator in Eq(3.12 has a resonant form in the
vicinity of coskglL=0, or kg=(n+1/2)7/L. To explore the

crogravity environment is=10cm. The wave vectokg of

the lowest-lying resonant mode is, then, given by
kr~2m/20 cm =0.33cm. In the case of near-criticAHe,
sound in the relevant frequency range propagates adiabati-
cally, and its speed is equal to X20*%%"Hz, wheret is

the reduced temperature= (T—T qitica)/ Teriical]l (S€€ Table

). The frequencyw of this mode is, thus, equal to
~1x10%%%7 Hz, If t=10"7, then w=4x10*Hz. The

idth of the resonance at this frequency is equal to
R=wr2=f/Af with 7=3.8x10'4" % sec. At
t=10"", wr=~2Xx10 ', so the mode is very well defined.
As the characteristic frequencies of random linear velocities
in a space environment are expected to be in the tens of
Hertz [11], resonant excitation of acoustic modes must be
considered unlikely.

The frequency at which the container is vibrating in a
space environment is small compared to the frequency of the
lowest-lying mode, and we can expand the expression in Eq.
(3.12 with respect tdkg. The velocity is given by

v(x,t)~Ve et . (3.19

1
1—§k§(x2—L2)

In the frame of reference of the vibrating container,

1
v(x,t)—>Ve*"”‘§kr2(L2—x2). (3.1

In the center of the containex€ 0) the velocity has a mag-
nitude equal tovV(1+ 3kgL?), so the velocity of the fluid in
the reference  frame of the container is
VK3L2=V(wL/Cg)?. The quantityCs is the adiabatic speed
of sound, as given above.

The above results allow us to check immediately for the
density flucutations induced by vibrations in the container
and the rate at which heat is generated as the result of vis-
cous damping of the fluid’s motion.

resonant response in greater detail, we evaluate the inte- The small fluctuations in density associated with the ve-

grated weight ob (x,t):

locity variation above are given by Eg8.2) and(3.16):
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. oxV dT L%y )
90(X,0)=ipe-c7 (3.17) - mfma(w)a(—w»dw. (3.22

The mean square variation in the density is
IV. RANDOM LINEAR ACCELERATIONS

w2x2\V/?2 ( AND TRANSPORT COEFFICIENTS
3.18

4 . . . .
Cs Because of the coupling of longitudinal velocity fluctua-
tions to the transverse velocity through the convective con-
tribution to the total hydrodynamic time derivatiysee Eq.

Sp(X, ) 8p(X, — w)=pg

Averaging over an ensemble of random velocities:

pzwz)(z(v(w)v(_ ) (2.4)], random vibrations of the container will alter transport
(8p(X, @) Sp(X,— w))= — . i coefficients, most notably the thermal conductivityand the
Cs shear viscosityy; . The changes in the transport coefficients

(3.19 due to mode coupling can be calculated with the use of a
modification of the standard perturbation-theoretical formal-
ism. The diagrammatic notation is summarized in Fig. 1. Itis
n adaptation of the approach appropriate to critical dynam-
cs in which there is a single fluctuating field, characteristi-
cally the energy density. The order parameter propagator in
the case at hand is more complicated, as we must take into
pgxz account fluctuations in both the energy density and the mass
(Sp(X,w)Sp(X,— w))= ?<a(w)a(— w)). (3.20  density. The scalar order parameter is a combination of those
s two fields. The underlying dynamics are outlined in Appen-
dix A. The order parameter propagator is obtained by invert-
ing the response equations

In the above equatioq,6p(X,w) Sp(X,— w)) is the spec-
tral density of mass density fluctuations ad w)v(— w))
is the spectral density of random container velocities. Usin
(a(w)a(— w))=wXv(w)v(—w)), where(a(w)a(— o)) is
the spectral density of accelerations, we end up with

The root mean square of density fluctuations is, then,

@\/I (a(w)a(—w))do< %\/I (a(w)a(—w))dw. kk? xk?
Cs Cs e1(k,w)| —iw+—2a(k) |+ pi(k,0) —5b(k) =1,
(3.2 c Pe
(4.1a
Thus, the fractional variation in density due to random ac- o
celerations of the container isL/C2\/[(a(w)a(— w))dw. ik?b(k)p¢ . 2ik’e(k)pe K]
We can also utilize the results for the velocity in a vibrating €1(kw) » —+piko) o+ ———+ I =Ty
container to estimate the rate at which the temperature will (4.1b
rise as a result of viscous damping of the induced velocity
fluctuations: the end result is The solution is
2ik2c(k 7 K? k?b(k
Ciwt (Kpe 7 _ K 2()
(Gl(k,w))_ 1 w Pc Pc fe
k)] D(Kw) ik2b(k Kkk?
p1(k,0) _ik*b(K)pc Lo+ a1
w Pc
Jee(ki0)  gep(km) ) [ fe
E( ? . 4.2
Ope(k,@)  gy(kw)/\f,
|
Theg's in Eq. (4.2) are the components of the order param-
eter propagator, and the functin(k, ) is given by Gr(k,w)= Epa—— (4.9
2ik%c(k 7 k2 2kk?a(k
D(k,w)= —iw—&-i- L)(—iw-i— K—z())
@ Pe Pe All quantities in the above equations are defined in Appen-
i kk*b(k)? dices A, B, and C.
T ape 4.3 The coupling of vibration-induced fluctuations in the lon-
C

gitudinal velocity to the transverse velocity leads to the fol-

By contrast, the transverse velocity propaga®afk,») has lowing insertion on the transverse velocity propagator line
the standard form [12,13:
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TABLE I. Definitions of the quantities appearing in the text, and

é the scaling behavior of critical thermodynamic functions and trans-
- R - C o SN port coefficients. The quantityt is the reduced temperature,
t=(T-T)/T,.
Dominant scaling
behavior
é Quantity Definition (if any)
b Qo R T. Critical temperature
De Critical mass density
FIG. 1. Some graphical elements of the Feyman Diagrams fog Correlation length otV @
critical dynamics(a) The heat diffusion propagatofh) The trans- 5 -
verse velocity field propagato(g) The “parametric” effect of ran- CP=T(_) Specific heat at xt"va
dom linear accelerations on the transverse velocity fiédjl;The I constant pressure
_parametrlc effect of random rotations on the transverse velocity s Specific heat at .
field. o=T|= ot
arj,, constant volume
5 1(V S
AZ(k,0)= | do'kj{(v(e")v(-0'))Cr(kotaw’) Br==yl7p Isothermal compressibility xt~v@
T
kf 5 1(&v) entroni ibility va
= deo’ — NVol—w). =— == sentropic compressibili o
J @ —I(w+w’)+771k2/pc<v(w Jo(—o')) VP
K Thermal conductivity ot~ D
(45) H H —vx,_ b
1 Shear viscosity 9
This insertion is illustrated in Fig. 1 The quantity is the_ Referencd 14],
component of the wave vectérthat is parallel to the longi- bReference12,13,15.16
tudinal velocity fluctuations. The one-loop correction to the B
thermal conductivity is of the form shown in Fig. 2. After where the thermal diffusivity is given by
some reduction, one finds for the leading order contribution
to the thermal conductivity K
D= : (4.9
2 dsp 1 TcCppe
3keThe (2m)* @' (p)[—iw+ mp*/pct+ AZ(p,0)]’ and the quantities in Eq4.8) are defined in Table I. Table II

(4.6)  contains relationships between the critical exponents dis-
) ) played in the right most column of Table I.
where a’ (k) =a(k) —b(k)*/4a(k)c(k) is the static energy ~ The renormalization of the transverse velocity propagator
density susceptibility. Furthermore, as discussed in Appendi}so leads—quite directly—to results for the alteration of the
B, a(0)ecp*. Utilizing an Ornstein-Zernicke-type form for effective shear viscosity. The fractional changepinfollows

a’ (k) [a’ (k)= &°+k?] and carrying out the integrations over from consideration of the insertiol\3 (k,w). Setting

the wave vectop, we arrive at the following correction to =0, we find
the thermal diffusivity to lowest nontrivial order in the ran-
dom linear motions: Ha(o)a(—w")) w'?L?

mk%p.—iw’  C;

1
AE(k,O)—>§k2f do

1 keT [ pc\°
B ’ ’ !
éDr=g- Pe (’7_2) fdw (a(w")a(—w")) 1, [ (a(e)a(—w")) 7k 02
3 (771k2/pc)2+w,2 Pc Cg .
><w/2|_4 1 1 g (4 9)
C! 1+iw pc&ln V=i peln ’

Taking the limitk—0, we see thatS«k* which means
(4.7 that random linear accelerations of the container leadoto
change in the effective shear viscosity.

V. EFFECTS OF RANDOM ROTATIONS ON TRANSPORT
COEFFICIENTS AND THERMODYNAMIC FUNCTIONS

~~o 3 - We will consider separately the two forcing terms estab-
"""""" lished in Sec. II.

FIG. 2. One-loop correction to the thermal conductivity. The . _— .
; . ; : - A. Rotations that couple the transverse velocity field to itself
three-point vertices in the diagram are generated by the convective

term in the heat transport equatidiq. (A8b)] and the term The insertion on the transverse propagator line associated
(1/p)(5F18€)Ve in Eq. (A8c). with the forceF,, is illustrated in Fig. 1. It leads immedi-
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ately to the insertion on the transverse velocity propagator
line shown in Fig. 3. This insertion has the form é_ é_

, (Q(@)Q)(~)) . . .
Ad(k,w)=— | do “i(wtw)+ K2/ FIG. 3. Insertion on the transverse velocity propagator line gen-
ne e erated by random rotations.
S (Q)(0)Q)(— o))

" pe j @ (w+ o' )%+ (9K pe)? Because of the way in which the one-loop correction to
2 , N the thermal conductivity depends on the shear viscdsig
- 7K f do’ (@) )Q,‘;( @ )>. (5.0 Eq.(4.4 and Ref[13]], the fractional change ir or Dy is
Pc @ the same as the fractional shift ip, . Note that both shifts
are independent of temperature and other parameters.

The quantity()| is the component of the rotation vector
parallel to the longitudinal velocity field. The final limit
above is atw=0 and ask—0. We have, as the fractional

> ! ’ B. Rotations that couple the transverse and longitudinal
change in the shear viscosity,

velocity fields

f dwm”(—me ) (5.2 The insertion on the transverse propagator is as illustrated
w in Fig. 1. Using Eq(4.2) and the relationshigAl) between

In the equations above(w)(— w)) is the spectral den- the mass den_S|ty and the longitudinal ve!ochy field, we have

sity of random rotations. for the alteration of the transverse velocity field propagator

—f do'{(Q (0")Q, (—w"))

—i(w+o')+2xk?a(k)/p?

><{—i(w-i— ')+ K[2ic(K)pe/ (0t o)+ 7 1p [ —i(0+ o) +2a(k) k% pZ]—ikk*b(k)2 (0+ o) p.
7 A0 (0") (- 0"))

— — | dw -
Pc w

(5.3

Because of the coupling between the two velocity fields, the The final contribution above to transport coefficients also
change in the shear viscosity is now proportional to the visproduces an alteration in thermodynamic susceptibilities.
cosity appropriate to the longitudinal velocity field. This is because of the relationship between the dynamical
The alteration above in the shear viscosity yields, as in thand thermodynamical response inherent in the system of
previous subsection, a perturbation in the thermal conductivequations discussed in Appendix A:
ity that s proportional  to  §/py)fdw’
X[(Q,(0")Q, (o)) w'?].
Finally, there is an insertion in the propagatp.(k,)
analogous to the transverse velocity insertion illustrated in
Fig. 3. This insertion has the following first order effect on The fractional shift incp is

the propagator: I. i a(k)b(k)2
k2 8{a(k)— b(k)Z/[4a(k)c(K) [e(K)pe

o= lim —5g..(k o). (5.6

k,wﬂOpC

f dw,gep(k!w)GT(klw+ w,)gpe<Ql(w/)Ql(_ w,)>'
(54 dew’(ﬂi(w’)ﬂl(—w’)) (5.7)
After some reduction, we find for the effective insertion

The limit k—0 is catastrophic because of the first term in
(5.7). The combination in the middle approaches the ratio

b(0)2 . - :
do'(Q, (0, (— o)), (5.5  cp/(cyCq) in that limit, and the integral over the spectrum
4c(0)%py (o . ) of random rotations is, of course, independentofFor a

bounded system, in which there is a natural lower limit to
the above being valid in the limit of smalk{w). This in- Kk, a finite correction tacp results from(5.7).
sertion doeshot have the form of a thermal conductivity, in There is no change in the specific heat of the system as-
that it does not vanish d¢ in the limit of long wavelength. sociated with the contributions te; arising from one-loop
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TABLE Il. Relations between various exponerdss the spatial W
dimensionality. ’ =9.77x10 %sed Cm\/f (a(w)a(—w))dwt™“.
Cc
a=2—dv? (6.0
y=v(2-7)°
X\ +Xx,=4—d+7" The exponentr in Eq.(6.1) is equal to 0.11, so the tempera-

ture dependence of the left hand side is not particularly
strong. We have assumed a container with a linear dimension
L~10cm. Data from experiments already performed on
ghuttle vibrations indicate that the largest sources @fjit-
ter” give rise to accelerations of order 1 cm/$ewith char-
acteristic frequencies of the order of 10 Hx1]. All this

V. EEFECTS OF RANDOM MOTIONS ON A 3He indicates that variations in the density will be no more than 1

CRITICAL POINT EXPERIMENT part in 10 down to reduced temperatures of £0
Next, we calculate the thermal drift due to viscous damp-
As an application of the results derived in the previousing of the vibration-induced motion of the fluid. Inserting

sections, we will calculate the effects of random linear andesults from Table Ili(lwe have utilized the amplitude @f,
rotational motion on the properties He in the vicinity of  as an estimate of the amplitude @f) we find
its liquid-gas critical point. This is with an eye to establish-
ing the limits placed on microgravity critical point measure-

3Referencd 14].
Reference$12,13,15,1%

corrections to that quantity as calculated in previous section
because canceling vertex corrections are also generated.

ments by vibrations in an orbiting laboratory. Information on d_T~1_5>< 102K sed¥(2—7—%,) 2«

the thermodynamic functions and transport properties in the dt

vicinity of the 3He critical point is incomplete. There is, in

addition, some variability in the data on linear accerelation in X f w*a(w)a(—w))do. (6.2

a space-based laboratory, and no measurements have been
made of rotations in that environment. Because of all this,
the calculations reported in this section will necessarily in-This effect is absolutely negligible.

volve approximations, and results will be accurate as order- Finally, Eq. (4.7) allows us to see what effect random
of-magnitude estimates at best. Nevertheless, we find that thear motion has on the thermal diffusivity. At very low
effects of random, linear accelertions are negligible in anyreduced temperatures the correlation lengttiominates all
foreseeable critical point experiment. In the case of rotationspther lengths in the integral and we find

sufficient uncertainty exists that one cannot rule them out as
a perturbing effect in the absence of an experimental deter-

4
mination of their magnitude. oDy 1 kgT L (Pc

3
D—T—%mc—g 77—1) §f wz(a(w)a(—w»dw

A. Linear accelerations — 7 56x 10~ 24— (3~ 7 %)~ 2a+ 3,
First, we will estimate the density fluctuations and the
temperature drift, using the results obtained in Sec. Ill. Using

2 _
Eq. (3.21) and values in Table Il we find Xf wa(e)a(-w))do. 6.3

TABLE Ill. Numerical values of some of the quantities that are used in the calculations relevant to
3He. Uncertainties are not recorded here but may be found in the cited references.

Quantity Definition Value

v Specific heat exponent 0.63
Anomalous dimension exponent 0.0002

Xy Thermal conductivity exponent 0.9%6

Pe Critical density 0.042 g/ci®

kgTe Critical temperaturdin cg9 4.58x10 8 g cnt/sed ©

D kP Thermal diffusivity 1.96x 10 4¢0-75cnf/secd

=

7s! ch°¢P Shear viscosity 3.9910 %t %4 cni/sec®

Bt Isothermal compressibility 1.8610 "t 18 cm/sed/g f

C, Velocity of sound(at low frequency 3.2x 104997 cm/sec?

I3 Correlation length 2.5810 87963 ¢m9

Cp specific heat at constant pressure X388t 18 ergs/gK"

:Reference{ﬂ]. *Referencd 20].

Reference$12,13. "Referencd 21].

‘Referenced 18]. Y9Referencd22].

YReferencd 19]. PReferencd 23].
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The power of the reduced temperature~is—1.5. At no Institute of Technology, under contract with the National
experimentally achievable value ofvill the above effect be Aeronautics and Space Administration, where this research

of any importance. was carried out.
B. Rotations APPENDIX A: HYDRODYNAMICS OF A SIMPLE LIQUID-
Here one is hampered by lack of information concerning GAS SYSTEM NEAR THE CRITICAL POINT

the random rotation_s on the space craf_t. However, it is pos- The dynamics of a simple liquid-gas system consists of
sible to come up with a very rough estimate of the spectrajj,q following three equationsl) Conservation of mass,

density, (Q(@)Q(—)). If we assumeQ(w)~v(w)/Ls,  \yhich relates the mass densip(x,t), to the mass current,
where L is the size of the shuttle, which we take to bej(x t) = p(x,t)V(X,t)
~10 m, then the effects of); of transport properties, as = ' n
given by Eq.(5.2), are ap
L iv.j=o0 (A1)
(a(w)a(—w)) o
do———F>—. (6.4
wLg

(2) Conservation ofttherma) energy—under the processes

If we replacew in the integrand above by 10 Hz and the Of convective transport and thermal diffusion,

integrated spectral density of accelerations by Acseé we .
arrive at a fractional effect df| of 1 part in 13° However, a_q +V. (ﬂ
this estimate is extremely crude, and there may be errors of a ot

few orders of magnitude. The same estimate applies for the

effect of Q, on the shear viscosity—assuming that and  The expressiodF/Jq on the right hand side ef EGA2) is

_v2F
kY25 FOD. (A2)

7 are close in magnitude. the functional derivative of the total Helmholtz free energy
As for the consequences on the thermal response dff the systemF, with respect tay(x,t), the thermal energy
Q, , we find for the fractional change in bof, andcp, per unit volume. The transport coefficiertis the thermal

conductivity. The last term on the right hand side represents
6Dt 8cp cpl? the rapidly varying contributions to thermal transport that
Dr ¢ Cvcgf do(Q, ()2, (- ) give rise to fluctuations in the energy density. These terms,
which have a “white noise” spectrum, satisfy the following
version of the fluctuation-dissipation relation in real space:

~10/ seét‘”<2—">J do(Q, (0)Q, (—w)).

65 (O(X,1)O(X',1))=2kg Tk V28(x—x") 8(t—t"), (A3)

The quantityL in Eq. (6.5 is the size of the container of ©F iN wave-vector—frequency space,

3He, which we take to be 10 cm. Once again, to within the
very large errors resulting from our uncertainties regarding
the spectrum of rotations, we find that there is no observable
effect at an achievable reduced temperature=of0 8.

(O(K,w)O(K',0"))=2kgTk?s(k+k")S(w+ o).
(Ad)

Equation(A3), or (A4), helps ensure the invariance of the
Boltzmann distribution exp{F/ksT) under the action of the
VIl. CONCLUSIONS system’s dynamics.

We have developed expressions defining the effects of (3) Finally, there_is the equation expressing the conserva-
fluctuating linear and rotational accelerations on static andion of momentum in the hydrodynamical system:
dynamic phenomena near a liquid-gas critical point. These

expressions are valid in the long-wavelength, low- frequency n 9 . 3+ YV + HV

limit. The results of this analysis were applied to the proper-  dt = dx; (o *atat) oq(x,t) px.t) op(X,t)

- 3 . .. . - .. . .

ties of “He in the vicinity of its critical point. Using V.G, (A5)

g-jitter data from previous space shuttle flights, we find that
random linear motions expected in future microgravity ex-
periments should not affect measurements of critical poin
phenomena to reduced temperatures of 810At this time,

measurements of random rotational motions in the space

El'he first term on the right hand side of E@D5) is the vis-
cous damping force. In more detalil,

shuttle are not available. However, using estimates for the (V'E)kEiUkF 7.V 20+ 2711+ 75 iV-v.
spectrum of random rotations we also find that there will be IXi 3 IXk
negligible effects on critical point phenomena. (AB)

The coefficientsy; and#, are, respectively, the shear and
bulk viscosities. The final term on the right hand side of the

The authors would like to acknowledge Solomon Woodsequation represents the fluctuating forces that act on the ve-
for calculations carried out early in the course of this work.locity field. These forces satisfy the fluctuation-dissipation
We acknowledge the Jet Propulsion Laboratory, Californiarelation
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(K, (K 0" )) = (2Kg T 11K25:: + 2K T[ & A straightforward set of thermodynamic arguments leads to
(&i(K,w)€(K',0"))=(2KgT 71k*&;; T3 M the relationship
+ 72]kiKj) o(k+ k") d(w+w"),
of
(A7) poy ~HP)=P(p.e), (A11)
which, again helps ensure that the dynamics leave the Bolt-
zmann distribution invariant. with P(p,€) the local pressure. Thus, if the free energy den-

The conservative contributions to the equations of masssity is purely local, then the macroscopic driving term in the
energy, and momentum conservation—contained on the lefnomentum conservation equation is the gradient of the pres-
hand sides of EqgA1), (A2), and (A5)—also preserve the sure. In fact, nonlocal contributions to the free energy den-
Boltzmann distribution by leaving the total free energy in-sity, in the form of terms containing spatial derivatives, play
variant. These equations thus form a dynamical system tha&n important role in coupling the heat- and mass-transport
encompasses both the macroscopic hydrodynamics of theguations.
liquid-gas system and the coarse-grained, thermally driven
fluctuations associated with the microscopic exploration of APPENDIX B: LINEARIZED HYDRODYNAMICS AND
phase space mandated by the ergodic hypothesis. TIME SCALES

Although the parameter sef(x,t), j(x,t), andq(x,t) is
the most natural basis for the derivation of equations that Linearized hydrodynamics describe the long-wavelength
satisfy all the conservation laws and invariance principleslow-frequency behavior of a system close to equilibrium. As
further development of the dynamics, especially as they apthe equilibrium state is one in which the free energy is mini-
ply in the immediate vicinity of the critical point, is greatly Mized, we write
simplified by replacing thermal energy density and mass cur-
rent by  thermal energy per unit mass,
e(x,t)=q(x,t)/p(x,t) and the velocity fieldy(x,t). In terms
of the new variable set the equations for mass, energy and
momentum conservation are as follows:

FZF(Po,fo)+f [a(k)er(k,w)e1(—k, ~w)

+ b(k)fl(kaw)Pl(_ k, - w)
+c(k)pa(k, ) p1(—k,—w)]d%

dp
o TV (V=0 (A83) +0[(p1,€1)]. (D)
Jde 1_,16F 1 The quantitieSp_1 and e, stand for the_ differences between _
TV Ve= ;V P St ;@), (A8D) the mass density and energy per unit volume and the equi-
librium values of those quantities. If the free energy density
oV SE SF 1 1 were purely local, then the coefficienggk), b(k), and
—+(V-V)WV+—|p———Ve|=-V.5+-¢& c(k) would not vary with the wave vectdr. Thermodynam-
ot pl” dp b€ p ics and dimensional considerations mandate the following

relationships between the coefficieat®), b(0), c(0), and

This set of equations can be thought of as “model H” critical Standard thermodynamic quantities:

dynamics[12,13, extended to include noncritical dynamical

behavior of the longitudinal component of the velocity field. a(0)= Pe (B2a)
Now, if the total free energy can be written 2Tcey’
V(dTIoV
F=J f(p(x),e(x))dx, (A9) b(0)= (f)s (B2b)
where f(p(x),e(x)) is a purely local function of the mass
density and energy per unit mass, then the terms proportional c(0)= 5. (B20)
to the derivatives of the free energy on the right hand side of 2Bsp¢

Eqg. (A8c) can be rearranged as follows:
The quantitycy, is the specific heat at constant volume, and

oF 6F of  of Bs is the adiabatic compressibility. Standard thermodynamic
PY 5o~ e verY ap Ge Ve formulas yield the following relationships:
=V(Pa—f—f(916)) a(0)[1— b(0)%4a(0)c(0)]= —£° (B3a)
P 2T.Cp’
of of

Vi-—Vp——V
VI, VP ge Ve c(0)[ 1—b(0)2/4a(0)c(0)]= (B3b)

2Brpg’

of
:V(p%_ f(p’e))' (A10) wherecp is the specific heat at constant pressure gnds
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the isothermal compressibility. For a complete list of the Expanding Eqs(A8) to first order inv, p;, ande; we

thermodynamic functions used in this paper see Table I.  obtain, in the wave-vector-frequency representation,
|
—iwpi(K,w)+pok-v(k,w)=0, (B4a)
] —k%k
—iwe(k,w)= ) [2a(k) e (k,w)+b(k)p,(k,w)], (B4b)
0
_ _ ", 1 k-v(k, )
—iowv(k,w)+ik[2c(k)pi(k,w)+b(k) e (k,0)]=— p—k v(k,w)+k 3 i+ e (B4o)
0 0

If we separate the momentum conservation equation into longitudinal and transverse parts, we obtain the following two
relations:

k2
—iwk-vi(k,w)+ik[2c(k)py(K, o) +b(k)es(k,w)]= — p—[§n1+ 72 |K-v(K, @), (B4d)
0
2
—iwv,;=— 7k Vi (B4e)
Po

We have decomposed the velocity figlihto its longitudinal ~ Here, the relaxation time for temperature inhomogeneities, at
and transverse components, i.gsv,+Vv;, in which the constant density, is much longer than the period of the mode.

transverse component has the propérty(k,w)=0. For this regime Eq(B6) reduces to
Note that equatior(B4e) for the time evolution of the
transverse velocity field is decoupled from the other equa- ,. . (AR3n+ )
tions in the set, and that the characteristic inverse relaxation o Fio——=——k;=2Cpok”=0. (B8)

. : . Po
time for the decay of a perturbation of the transverse velocity

field is immediately given by This is the equation satisfied by a viscously damped, adia-
batic sound wave. If we replace by the undamped solution

Oy(K) = 1Ur (k)= %kz. (85) to Eq. (B7), the relationship inB7) is replaced by
0
2k’ka(k)  ——
The three remaining equation®4a), (B4b), and(B4d), are pg <V2e(k)pok=Csk, (B9)

coupled. The frequency of a normal mode, at which they can

be simultaneously satisfied, is given by the solution to thevhereC; is the velocity of an adiabatic acoustic wave. This
following dispersion relation: relation is satisfied at sufficiently small wave vectors, or suf-
ficiently long wavelengths. The second regime is defined by

2ka(k) the converse of the relationship above, i.e.,

0=iw(w?—2¢(K)pok?) = ——Kk? w?—2c(k) pok?
2 " - 2k?ka(k) 810
b(k 4n/3+ <
X(l— (k) ) i 71 772k2 p:
4a(k)c(k) Po
_ 2xa(k) , Here the equation is, asymptotically,
X|To= k. (B6) )
" N L N P S
Po Po 4a(k)c(k)

There are three solutions to this cubic equation. One of them
is a pure imaginary solution corresponding to the inverse

relaxation time for thermal diffusion. The two others gener-Now, the velocity is that of an isothermal sound wave. Re-

ally correspond to the frequency of an acoustic mode. In tW@acing w by the solution to the undamped equation, we
limiting regimes, this mode is well defined. The first of thosearrive at the alternate form of E¢B11):
two regimes is defined by the relationship

2k?ka(k) \/ b(k)?
2k2Ka(k) 87 p—g> 2¢c(k)po| 1— W k=c+k.

iz (B12)

w>
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Herecy is the velocity of an isothermal acoustic mode. This  Fluctuations in x(q) act on the quadratic term
relation will hold when the wave vector is sufficiently large, Z,Ay(q)y(—q) through the “correlation bubble”

or the wavelength is sufficiently small. (C(q)C(—q)), where
To find the final root of the global dispersion relation
(B6), setw=i{. The resulting equation is a cubic with real, 1
positive coefficients. There is one real root, and that real root C(g)= N X(q—01)X(dy)- (C3)

must be negative. If we anticipate that thiéhat solves the

equation is of ordek?, for smallk, then the equation satis- Because this bubble has the form of an energy-energy corre-
fied by { reduces to lation function—in the language of the Ising spin model—
) ) straightforward scaling considerations yield for the renor-
_ 2a(k)k { b(k)

_ malizedA
. 22K ek +0(k%). (B13)

A=Q* g(T-T)Q V",a/Q), (C4

with Q again an inverse length scale. This scaling form holds

if the critical exponent for the specific heat at constant vol-

ume,a=2—dv, is greater than zero, as it is in the case of

the simple gas-liquid critical point. The rescaling Af is
Because there are two fluctuating fields to take into acdiscussed in more detail in Appendix D.

count in the calculation of-jitter effects, the “bare” effec- Now, the two fieldsx(q) andy(q) are linear combina-

tive Hamiltonian is somewhat more complicated than in thetions of the energy densitg(q) and the mass density

case of the scalafi.e., single component order paramgter p(d). Specifically, we assume

¢* model. In this Appendix we review the features, particu-

This is the dispersion relation for thermal conduction.

APPENDIX C: EFFECTIVE HAMILTONIAN IN THE CASE
OF TWO SCALAR FIELDS

larly the critical behavior, of a model for simple gas-liquid y(q)=ae(q)+ Bp(a), (C5a
critical behavior that incorporates the effects of fluctuations _
in both the mass density and the energy density. x(q) = ye(q) + dp(q). (CSh

The most general case of a theory with two fluctuating
scalar fields, one of which becomes critical at a temperatur
Ty, has the following Ginzburg-Landau-Wilson expansion in
the immediate vicinity of the critical point:

Substituting into Eq(C1), we obtain the following free en-
grgy inp ande, to quadratic order in the two densities:

F[e,p]=§ [a(q)e(q)e(—q)+b(q)e(q)p(—q)
H[x(q>,y<q>]=§ r(q)x(q)x(—q)

+e(@p(p(=a)], (Co)
1
FRU S x(@)x(@) where
e a(q)=r(q)a?+Ay?, (C7a
1
+J_—U > X(01)x(d2)y(ds) b(q)=2r(q)ap+2AyS, (C7b
N ap+---+d3=0
c(q)=r(q)B2+As. (C79
-q). C
+§ ANQY(=Q) D The coefficientsa(q), b(q), andc(q) are dominated by the

. _ ~_contributions ofA in the immediate vicinity of the critical
All neglected terms are higher order in the fluctuating fieldspoint, as the approach to zero Afis much gentler than that

x(q) andy(qg), and are irrelevant in the renormalization f r(q). Thus, the sound velocit€ = 1/\/B<p. vanishes as
group sense. In the vicinity of the critical temperature, the;a/2

“bare” quadratic coefficientr (q) goes to zero whil& is a The behavior of the combinatioa(q)—b(q)2/4c(q) is

nonzero positive constant. _ _ another matter entirely. Using EqC7):

Fluctuations in the critical fielat(g) will renormalize the
coefficientsr (q), u, v, andA. Because the quadratic terms b? ) , 2a?BP+A?y?5°+2rAaByd
influence the slow dynamics most strongly we concentrate &~ %:ra Ay - r B2+ A5
onr(q) andA. The ultimate form ofr(q) is well known.

Asymptotically

r(o)—Q* "f(T-T.)Q *,a/Q), (€2

r

2
=rla——|+0 K)' (C)

6

) _ This combination scales agq).
where v is the correlation length exponent—

(o (T—T,) "—andQ is an inverse length scale, determined
either by the correlation lengtfi.e., Qx¢™1) or by the in-

ternal wave vectog (Qxq). This is just standard correlation In this Appendix, we fill in the details of the renormaliza-
function scaling. tion of the coefficientA in the Ginzburg-Landau equation,

Xl. RENORMALIZATION OF THE COEFFICIENT A
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Eq. (C1). We start by introducing a fieldy(q), conjugate to h(ah(=a) , 4 ..
the noncritical fieldk(q). The portion of the Boltzmann fac- - anz Y Q ' (D3)
tor where the exponent is linear and quadratix(q) is
1 where the quantit® is an infrared momentum cutoff. There
expl — X AX(@)X(—q)—v \/—— is, then, a Gaussian contribution to the Boltzmann factor of
q N the form
X X + h(q)x(— .
q1+-~2q3=0 (d0)y(d2)y(ds) Eq: (a)x( Q)) od h(g)h(—q) ~ h(gq)h(—q) Y202 04
4A 4A° ‘

(D1)

Integrating oveix(q), we obtain the following contribution ¢
to the Boltzmann factor, where prefactors to the exponentiaé
have been neglected:

inally, we reintroduce the variabl{q) by multiplying the
oltzmann factor by eXp-iZgh(g)x(—q)] and integrating
overh(qg). The result is the Gaussian form

h(@h(-q) _ iv
exp(_% 7T Ax(q)x(—q)) o5

R T 15,207 2
X X J avy(a2)y(as) | (D2)

gy t+---+az= . " e
! : Now, if the critical exponent for the specific heat at con-

The second term in the above exponent represents an enstant volume,a=2—dv, is greater than zero, then as
gylike coupling to they(q)’s. Integrating out those variables, Q—0 the renormalized coefficierd vanishes a€Q?~ ¢,

we are left with the following quadratic term in theq)’s while A renormalizes to @monzerovalue if <<O.
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