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The effects of random accelerations on the measurements of quantities in the vicinity of the liquid-gas
critical point are considered when the system is in a microgravity environment. These accelerations couple to
the order parameter through the transverse component of the velocity field, whose dynamics are also governed
by critical point properties of the liquid-gas system. The action of the accelerations is amplified by the singular
static and dynamic response of the gas-liquid system. A general formulation, based on ‘‘model H’’ critical
dynamics allows for the calculation of a variety of quantities. It is found that the random accelerations expected
in a microgravity environment will not compromise the accuracy of any experiment that is currently envi-
sioned.

PACS number~s!: 05.40.1j, 64.60.Ht

I. INTRODUCTION

Space-based laboratories present the researcher with an
environment in which the properties of some critical point
systems of current interest can be investigated with unprec-
edented accuracy@1#. Among the most important of those
systems are liquids having a critical or multicritical point. It
has been known for a long time that the variations in the
pressure of a liquid sample due to the Earth’s gravitational
attraction impose the ultimate limit on the accuracy of any
measurement of critical point properties in an earthbound
laboratory @2#. The effects of gravity are especially pro-
nounced for the very important and widely studied liquid-gas
critical point of a single chemical component, which corre-
sponds to the termination of the coexistence curve separating
the liquid and vapor phases@2#. For this system, the order
parameter couples directly to the gravitational field. Given
the formal correspondences that follow from the universality
of critical behavior, the liquid-gas critical point is effectively
identical to that of a uniaxial ferromagnet whose Curie-point
behavior has been disrupted by the action of a spatially vary-
ing, externally generated magnetic field.

The potential benefits of improved measurements of criti-
cal point properties in simple gas-liquid systems are pro-
found. These systems represent the first discovered example
of critical point behavior@3#. They are also exemplars of a
broad class of systems. The exponents that quantify the criti-
cal behavior of simple gas-liquid systems should also apply
to analogous behavior in uniaxial ferromagnets and antifer-
romagnets at the Curie and Ne´el points, two-component mix-
tures at the demixing transition, and the Ising model@4#. This
last system is, in itself, extremely important. The mathemati-
cal simplicity of the Ising model’s Hamiltonian allows for
relative ease of renormalization-group-based analysis@5#,
Monte Carlo simulations@6#, and high and low-temperature
expansions@7#. Because of this, the predicted values of the
critical exponents of the simple gas-liquid universality class
in three dimensions are the most precise and reliable of all
nonexact theoretical results in the study of critical phenom-

ena. An accurate experimental determination of the critical
properties of a simple gas-liquid system represents a strin-
gent, possibly decisive, experimental test of some of the
most important theoretical models and techniques—as well
as some of the most influential ideas about the behavior of
interacting systems—that have been developed in the past
four decades.

The environment in a space-based laboratory is not en-
tirely free of gravitational effects. There are, of course, the
forces due to the gravitational interactions between all the
matter on the space craft. Much more importantly, random
accelerations, which are unavoidable in an orbiting labora-
tory, give rise to effective gravitational-like forces. Unlike
the Earth’s gravitational field these forces fluctuate in time,
but they nevertheless can act to limit the ultimate precision
with which critical point measurements can be performed. In
this paper, we present the results of a study of the effects of
fluctuating linear and rotational accelerations on the static
and dynamics of a simple gas-liquid system in the immediate
vicinity of its critical point. This study represents the
completion of work reported on previously@8#. The approach
utilized here is to be contrasted with the calculation of Fer-
rell @9#, who utilized an approximate, self-consistent
fluctuation-dissipation relation to obtain predictions for the
effects of random linear accelerations on the wave-vector-
dependent thermal conductivity. We develop an approach
that yields a larger number of results, albeit in the long-
wavelength, low-frequency limit.

The results of this theoretical analysis will be applied to
the 3 He critical point, which is now being considered as a
model liquid-gas system for study in a space environment
@10#. We find that the random motions expected in a micro-
gravity environment will not compromise the accuracy of
any forseeable experiment.

II. PERTURBING FORCES DUE TO RANDOM MOTIONS
OF THE APPARATUS

The critical dynamics of a liquid-gas system are con-
trolled by the transverse~i.e., divergence-free! component of
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the velocity field. An essential stage in the assessment of the
effects of small random motions on the critical properties of
a liquid-gas system is, thus, to determine the exact manner in
which random linear accelerations and rotations couple to
the transverse velocity field. We will find that there are four
such couplings, each of which can produce an effect on the
critical point properties.

As our first step, however, it is necessary to consider the
effect of small fluctuations in the linear velocity of the sys-
tem on the purely longitudinal~i.e., irrotational! velocity
field. If a container suffers only linear accelerations then the
most reasonable assumption that one can make is that the
fluid contained in it translates with the container as if it were
a solid body. However, near its critical point a fluid is highly
compressible, and because of that its velocity can vary con-
siderably from point to point. Furthermore, the system has
normal modes that can, in principle, be resonantly excited if
variations in the container’s motion have the proper fre-
quency. Such a resonant excitation of modes could, in prin-
ciple, lead to a tremendous amplification of the effects of
small accelerations. This issue is addressed in the next sec-
tion. Resonant excitation of normal modes does not occur in
the parameter range of interest in this study. However, be-
cause of the nonvanishing compressibility of the liquid-gas
system, modes will be nonresonantly excited. The lowest-
lying modes will be the most strongly excited by this mecha-
nism.

Linear accelerationsonly couple directly to the longitudi-
nal component of the velocity field. There are two ways in
which the purely longitudinal inertial forces induced by lin-
ear motion of the container indirectly perturb the transverse
component of the velocity field. First, the effective gravita-
tional force can have a transverse component, as the result of
fluctuations in the mass densityr(x,t). In ‘‘Fourier space’’
this component can be written as

F1~k,t !5T~k!•„a~ t !r~k,t !…, ~2.1!

wherea(t) is the fluctuating linear acceleration of the con-
tainer, and the projection operatorT, with elements
Ti j (k)5d i j2kikj /k

2, selects the transverse part of the iner-
tial force a(t)r(x,t). This is the coupling that gives rise to
the perturbations calculated by Ferrell@9#. A second coupling
of the linear accelerations to the transverse velocity is via the
convective contribution, (v•“)v, to the total time derivative
of the velocity in its equation of motion@see Eq.~A8c!#. We
begin by writing

~v•“ !v5 1
2“v

22v3~“3v!. ~2.2!

Decomposing the velocity fieldv into transverse and longi-
tudinal components,vt andvl , we find that the only contri-
bution to the convective part of the time derivative that has a
nonzero transverse component is

vl3~“3vt!. ~2.3!

The transverse contribution to the effective force associated
with Eq. ~2.3! can be extracted in Fourier space. It is

F2~k,t !52vt~k!~vl•k!. ~2.4!

Implicit in this result is the assumption that the longitudinal
component of the velocity field is effectively constant
throughout the container.

Random rotations of a container will also give rise to
effective forces on the liquid-gas system contained therein.
The most important of these are the Coriolis forces. The
general form of such forces is

FC52V3v. ~2.5!

In this case there is direct coupling to the transverse compo-
nent of the velocity field. The transverse component of the
Coriolis force given by Eq.~2.5!, with v5vt is, in Fourier
space,

F352V•k~k3vt!/k
2. ~2.6!

Finally, the component of the rotational velocityV that is
transverse to both vt(k) and vl(k)—denoted by
V'—couples the longitudinal and transverse velocity fields.
That is, the transverse velocity field responds to an effective
force given by

F4a52~V'3vl !, ~2.7!

while the longitudinal velocity field is subject to the effective
force

F4b52~V'3vt!. ~2.8!

Note that the forceF1 can be thought of as ‘‘direct,’’ in that
it does not depend directly on the velocity fields. By contrast,
the forcesF2 , F3 , andF4a, 4b , which have a linear depen-
dence onv, are ‘‘parametric’’ in form.

As it turns out, the forceF1 , which is central to Ferrell’s
calcuations, does not play a role in our approach.

III. MOTION OF FLUID IN A VIBRATING CONTAINER

The next step in the assessment of the effects of random
motions of a container is to determine the response of the
fluid to those motions. To simplify the discussion of the ef-
fects of linear accelerations, we assume a one-dimensional
geometry. The linearized hydrodynamical equations that con-
trol the evolution of the velocity fieldv(x,t) and the mass
densityr(x,t) are

r0
]v
]t

52@r0bs#
21

]r

]x
1h̄

]2v
]x2

, ~3.1!

]r

]t
52r0

]v
]x

, ~3.2!

where rc is the equilibrium fluid density, taken to be the
critical density,bS is the isentropic compressibility, andh̄ is
the viscosity. In terms of the shear viscosityh1 and the bulk
viscosityh2 , h̄ 5h1/31h2 .

If we write

v~x,y!5v0e
i ~kx2vt !, ~3.3a!

r~x,y!5Drei ~kx2vt !, ~3.3b!
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then Eqs.~3.1! and ~3.2! become

2 ivv0r052
ikDr

r0bs
2k2h̄ v0 , ~3.4!

ivDr5 ikr0v0 . ~3.5!

These two equations imply the following dispersion relation:

v22
k2

r0bs
1
ivk2h̄

r0
50. ~3.6!

Solving for the wave vectork,

k5A r0bsv
2

12 ivbsh̄

5A ~v/c!2

12 ivt

[kR1 ikI . ~3.7!

In the equation abovet5bsh̄ is the relaxation time and the
undamped sound velocityc is given by

c51/Ar0bs. ~3.8!

Suppose now that we are interested in the behavior of the
velocity field inside a steadily vibrating container. The most
general solution to the one-dimensional equations of
motion—the time dependence being sinusoidal with angular
frequencyv—is

v~x,t !5@AeikRx2kIx1Be2 ikRx1kIx#e2 ivt

1@Ce2 ikRx2kIx1DeikRx1kIx#eivt. ~3.9!
If we impose the following boundary conditions on the

velocity field at the ends of the container, atx56L,

v~L,t !5v~2L,t !5Vcosvt, ~3.10!

then the coefficients in Eq.~3.9! must take on the following
values:

A5B5
V

4 cos~kRL1 ikIL !
, ~3.11a!

C5D5
V

4 cos~kRL2 ikIL !
. ~3.11b!

The velocity field inside the container (2L<x<L) is

v~x,t !5V ReFe2 ivt
cos~kRx1 ikIx!

cos~kRL1 ikRL !G . ~3.12!

The denominator in Eq.~3.12! has a resonant form in the
vicinity of coskRL50, or kR5(n11/2)p/L. To explore the
resonant response in greater detail, we evaluate the inte-
grated weight ofv(x,t):

E
2L

L

v~x,t !dx

5V ReE
2L

L

cos~kRx1 ikIx!dx
e2 ivt

cos~kRL1 ikIL !

52V ReF e2 ivt

kR1 ikI
tan~kRL1 ikIL !G .

52V ReF e2 ivt

kR1 ikI

sinkRL coskRL1 i sinhkIL coshkIL

cos2kRL1sinh2kIL
G .

~3.13!

If vt!1 in the vicinity of the resonance, then the amplitude
of the velocity goes as

v2tL/c

@vL/c2~n11/2!p#21~v2tL/c!2
. ~3.14!

Now, the linear dimension of a container in the kind of
low-temperature experiment likely to be performed in a mi-
crogravity environment is'10cm. The wave vectorkR of
the lowest-lying resonant mode is, then, given by
kR'2p/20 cm50.33cm. In the case of near-critical3He,
sound in the relevant frequency range propagates adiabati-
cally, and its speed is equal to 3.23104t0.057Hz, wheret is
the reduced temperature@ t5(T2T critical)/Tcritical# ~see Table
III !. The frequencyv of this mode is, thus, equal to
;13104t0.057 Hz. If t51027, then v543103 Hz. The
width of the resonance at this frequency is equal to
Q5vt/25 f /D f with t53.8310212t20.14 sec. At
t51027, vt'231027, so the mode is very well defined.
As the characteristic frequencies of random linear velocities
in a space environment are expected to be in the tens of
Hertz @11#, resonant excitation of acoustic modes must be
considered unlikely.

The frequency at which the container is vibrating in a
space environment is small compared to the frequency of the
lowest-lying mode, and we can expand the expression in Eq.
~3.12! with respect tokR . The velocity is given by

v~x,t !'Ve2 ivtF12
1

2
kR
2~x22L2!G . ~3.15!

In the frame of reference of the vibrating container,

v~x,t !→Ve2 ivt
1

2
kr
2~L22x2!. ~3.16!

In the center of the container (x50) the velocity has a mag-
nitude equal toV(11 1

2kRL
2), so the velocity of the fluid in

the reference frame of the container is
VkR

2L25V(vL/CS)
2. The quantityCS is the adiabatic speed

of sound, as given above.
The above results allow us to check immediately for the

density flucutations induced by vibrations in the container
and the rate at which heat is generated as the result of vis-
cous damping of the fluid’s motion.

The small fluctuations in density associated with the ve-
locity variation above are given by Eqs.~3.2! and ~3.16!:
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dr~x,v!5 irc
vxV

CS
2 . ~3.17!

The mean square variation in the density is

dr~x,v!dr~x,2v!5rc
2v2x2V2

Cs
4 . ~3.18!

Averaging over an ensemble of random velocities:

^dr~x,v!dr~x,2v!&5
rc
2v2x2^v~v!v~2v!&

Cs
4 .

~3.19!

In the above equation,^dr(x,v)dr(x,2v)& is the spec-
tral density of mass density fluctuations and^v(v)v(2v)&
is the spectral density of random container velocities. Using
^a(v)a(2v)&5v2^v(v)v(2v)&, where^a(v)a(2v)& is
the spectral density of accelerations, we end up with

^dr~x,v!dr~x,2v!&5
rc
2x2

Cs
4 ^a~v!a~2v!&. ~3.20!

The root mean square of density fluctuations is, then,

rcx

Cs
2AE ^a~v!a~2v!&dv<

rcL

Cs
2AE ^a~v!a~2v!&dv.

~3.21!

Thus, the fractional variation in density due to random ac-
celerations of the container is'L/Cs

2A*^a(v)a(2v)&dv.
We can also utilize the results for the velocity in a vibrating
container to estimate the rate at which the temperature will
rise as a result of viscous damping of the induced velocity
fluctuations: the end result is

dT

dt
'

L2h̄

Cs
4rccP

E v2^a~v!a~2v!&dv. ~3.22!

IV. RANDOM LINEAR ACCELERATIONS
AND TRANSPORT COEFFICIENTS

Because of the coupling of longitudinal velocity fluctua-
tions to the transverse velocity through the convective con-
tribution to the total hydrodynamic time derivative@see Eq.
~2.4!#, random vibrations of the container will alter transport
coefficients, most notably the thermal conductivityk and the
shear viscosityh1 . The changes in the transport coefficients
due to mode coupling can be calculated with the use of a
modification of the standard perturbation-theoretical formal-
ism. The diagrammatic notation is summarized in Fig. 1. It is
an adaptation of the approach appropriate to critical dynam-
ics in which there is a single fluctuating field, characteristi-
cally the energy density. The order parameter propagator in
the case at hand is more complicated, as we must take into
account fluctuations in both the energy density and the mass
density. The scalar order parameter is a combination of those
two fields. The underlying dynamics are outlined in Appen-
dix A. The order parameter propagator is obtained by invert-
ing the response equations

e1~k,v!F2 iv1
kk2

rc
2 2a~k!G1r1~k,v!

kk2

rc
2 b~k!5 f e ,

~4.1a!

e1~k,v!
ik2b~k!rc

v
1r1~k,v!F2 iv1

2ik2c~k!rc
v

1
h̄ k2

rc
G5 f r.

~4.1b!

The solution is

S e1~k,v!

r1~k,v!
D 5

1

D~k,v! S 2 iv1
2ik2c~k!rc

v
1

h̄ k2

rc
2

kk2b~k!

rc
2

2
ik2b~k!rc

v
2 iv1

kk2

rc
2 2a~k!

D S f e

f r
D

[S gee~k,v! ger~k,v!

gre~k,v! grr~k,v!
D S f e

f r
D . ~4.2!

Theg’s in Eq. ~4.2! are the components of the order param-
eter propagator, and the functionD(k,v) is given by

D~k,v!5S 2 iv2
2ik2c~k!rc

v
1

h̄ k2

rc
D S 2 iv1

2kk2a~k!

rc
2 D

2
ikk4b~k!2

vrc
. ~4.3!

By contrast, the transverse velocity propagatorGT(k,v) has
the standard form

GT~k,v!5
1

2 iv1h1k
2/rc

. ~4.4!

All quantities in the above equations are defined in Appen-
dices A, B, and C.

The coupling of vibration-induced fluctuations in the lon-
gitudinal velocity to the transverse velocity leads to the fol-
lowing insertion on the transverse velocity propagator line
@12,13#:
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DS~k,v!5E dv8ki
2^v~v8!v~2v8!&GT~k,v1v8!

5E dv8
ki
2

2 i ~v1v8!1h1k
2/rc

^v~v8!v~2v8!&.

~4.5!

This insertion is illustrated in Fig. 1. The quantityki is the
component of the wave vectork that is parallel to the longi-
tudinal velocity fluctuations. The one-loop correction to the
thermal conductivity is of the form shown in Fig. 2. After
some reduction, one finds for the leading order contribution
to the thermal conductivity

2

3
kBTrcE d3p

~2p!3
1

a8~p!@2 iv1h1p
2/rc1DS~p,0!#

,

~4.6!

where a8(k)5a(k)2b(k)2/4a(k)c(k) is the static energy
density susceptibility. Furthermore, as discussed in Appendix
B, a(0)}cP

21 . Utilizing an Ornstein-Zernicke-type form for
a8(k) @a8(k)5j21k2# and carrying out the integrations over
the wave vectorp, we arrive at the following correction to
the thermal diffusivity to lowest nontrivial order in the ran-
dom linear motions:

dDT5
1

9p

kBT

rc
S rc

h1
D 3E dv8^a~v8!a~2v8!&

3
v82L4

Cs
4

1

11 iv8rcj
2/h1

F 1

A2 iv8rc /h1

2jG ,
~4.7!

where the thermal diffusivity is given by

DT5
k

TccPrc
, ~4.8!

and the quantities in Eq.~4.8! are defined in Table I. Table II
contains relationships between the critical exponents dis-
played in the right most column of Table I.

The renormalization of the transverse velocity propagator
also leads—quite directly—to results for the alteration of the
effective shear viscosity. The fractional change inh1 follows
from consideration of the insertionDS(k,v). Setting
v50, we find

DS~k,0!→
1

3
k2E dv8

^a~v8!a~2v8!&
h1k

2/rc2 iv8

v82L4

C2
4

5
1

3
k2E ^a~v8!a~2v8!&

~h1k
2/rc!

21v82
h1k

2

rc

v82L4

Cs
4 .

~4.9!

Taking the limit k→0, we see thatDS}k4, which means
that random linear accelerations of the container lead tono
change in the effective shear viscosity.

V. EFFECTS OF RANDOM ROTATIONS ON TRANSPORT
COEFFICIENTS AND THERMODYNAMIC FUNCTIONS

We will consider separately the two forcing terms estab-
lished in Sec. II.

A. Rotations that couple the transverse velocity field to itself

The insertion on the transverse propagator line associated
with the forceF4a is illustrated in Fig. 1. It leads immedi-

FIG. 1. Some graphical elements of the Feyman Diagrams for
critical dynamics.„a… The heat diffusion propagator;„b… The trans-
verse velocity field propagator;„c… The ‘‘parametric’’ effect of ran-
dom linear accelerations on the transverse velocity field;„d… The
‘‘parametric’’ effect of random rotations on the transverse velocity
field.

FIG. 2. One-loop correction to the thermal conductivity. The
three-point vertices in the diagram are generated by the convective
term in the heat transport equation@Eq. ~A8b!# and the term
(1/r)(dF/de)¹e in Eq. ~A8c!.

TABLE I. Definitions of the quantities appearing in the text, and
the scaling behavior of critical thermodynamic functions and trans-
port coefficients. The quantityt is the reduced temperature,
t5(T2Tc)/Tc .

Quantity Definition

Dominant scaling
behavior
~if any!

Tc Critical temperature
rc Critical mass density
j Correlation length }t2n a

cP5TS]S]TD
P

Specific heat at
constant pressure

}t2g a

cV5TS]S]TD
V

Specific heat at
constant volume

}t2a a

bT52
1

V S]V]PD
T

Isothermal compressibility }t2g a

bS52
1

V S]V]PD
S

Isentropic compressibility }t2g a

k Thermal conductivity }t2nxl b

h1 Shear viscosity }t2nxh b

aReference@14#.
bReferences@12,13,15,16#.
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ately to the insertion on the transverse velocity propagator
line shown in Fig. 3. This insertion has the form

DS~k,v!52E dv8
^V i~v!V i~2v!&

2 i ~v1v8!1h1k
2/rc

5
h1k

2

rc
E dv8

^V i~v!V i~2v!&
~v1v8!21~h1k

2/rc!
2

→
h1k

2

rc
E dv8

^V i~v8!V i~2v8!&
v82

. ~5.1!

The quantityV i is the component of the rotation vectorVW
parallel to the longitudinal velocity field. The final limit
above is atv50 and ask→0. We have, as the fractional
change in the shear viscosity,

E dv
^V i~v!V i~2v!&

v2 . ~5.2!

In the equations abovêV i(v)V i(2v)& is the spectral den-
sity of random rotations.

Because of the way in which the one-loop correction to
the thermal conductivity depends on the shear viscosity@see
Eq. ~4.4! and Ref.@13##, the fractional change ink or DT is
the same as the fractional shift inh1 . Note that both shifts
are independent of temperature and other parameters.

B. Rotations that couple the transverse and longitudinal
velocity fields

The insertion on the transverse propagator is as illustrated
in Fig. 1. Using Eq.~4.2! and the relationship~A1! between
the mass density and the longitudinal velocity field, we have
for the alteration of the transverse velocity field propagator

2E dv8^V'~v8!V'~2v8!&

3
2 i ~v1v8!12kk2a~k!/rc

2

$2 i ~v1v8!1k2@2ic~k!rc /~v1v8!1h̄ /rc#%@2 i ~v1v8!12a~k!k2/rc
2#2 ikk4b~k!2/~v1v8!rc

→
h̄

rc
E dv8

^V'~v8!V'~2v8!&
v82

~5.3!

Because of the coupling between the two velocity fields, the
change in the shear viscosity is now proportional to the vis-
cosity appropriate to the longitudinal velocity field.

The alteration above in the shear viscosity yields, as in the
previous subsection, a perturbation in the thermal conductiv-
ity that is proportional to (h̄ /rc)*dv8
3@^V'(v8)V'(2v8)&/v82#.

Finally, there is an insertion in the propagatorgee(k,v)
analogous to the transverse velocity insertion illustrated in
Fig. 3. This insertion has the following first order effect on
the propagator:

E dv8ger~k,v!GT~k,v1v8!gre^V'~v8!V'~2v8!&.

~5.4!

After some reduction, we find for the effective insertion

b~0!2k

4c~0!2rc
3E dv8^V'~v8!V'~2v8!&, ~5.5!

the above being valid in the limit of small (k,v). This in-
sertion doesnot have the form of a thermal conductivity, in
that it does not vanish ask2 in the limit of long wavelength.

The final contribution above to transport coefficients also
produces an alteration in thermodynamic susceptibilities.
This is because of the relationship between the dynamical
and thermodynamical response inherent in the system of
equations discussed in Appendix A:

cP5 lim
k,v→0

k

rc
2gee~k,v!. ~5.6!

The fractional shift incP is

lim
k→0

1

k2
a~k!b~k!2

8$a~k!2b~k!2/@4a~k!c~k!#%c~k!rc

3E dv8^V'~v8!V'~2v8!&. ~5.7!

The limit k→0 is catastrophic because of the first term in
~5.7!. The combination in the middle approaches the ratio
cP /(cVCs

2) in that limit, and the integral over the spectrum
of random rotations is, of course, independent ofk. For a
bounded system, in which there is a natural lower limit to
k, a finite correction tocP results from~5.7!.

There is no change in the specific heat of the system as-
sociated with the contributions tokT arising from one-loop

FIG. 3. Insertion on the transverse velocity propagator line gen-
erated by random rotations.
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corrections to that quantity as calculated in previous sections
because canceling vertex corrections are also generated.

VI. EFFECTS OF RANDOM MOTIONS ON A 3He
CRITICAL POINT EXPERIMENT

As an application of the results derived in the previous
sections, we will calculate the effects of random linear and
rotational motion on the properties of3He in the vicinity of
its liquid-gas critical point. This is with an eye to establish-
ing the limits placed on microgravity critical point measure-
ments by vibrations in an orbiting laboratory. Information on
the thermodynamic functions and transport properties in the
vicinity of the 3He critical point is incomplete. There is, in
addition, some variability in the data on linear accerelation in
a space-based laboratory, and no measurements have been
made of rotations in that environment. Because of all this,
the calculations reported in this section will necessarily in-
volve approximations, and results will be accurate as order-
of-magnitude estimates at best. Nevertheless, we find that the
effects of random, linear accelertions are negligible in any
foreseeable critical point experiment. In the case of rotations,
sufficient uncertainty exists that one cannot rule them out as
a perturbing effect in the absence of an experimental deter-
mination of their magnitude.

A. Linear accelerations

First, we will estimate the density fluctuations and the
temperature drift, using the results obtained in Sec. III. Using
Eq. ~3.21! and values in Table III we find

Adr2

rc
59.7731029sec2 cmAE ^a~v!a~2v!&dvt2a.

~6.1!

The exponenta in Eq. ~6.1! is equal to 0.11, so the tempera-
ture dependence of the left hand side is not particularly
strong. We have assumed a container with a linear dimension
L'10 cm. Data from experiments already performed on
shuttle vibrations indicate that the largest sources of ‘‘g jit-
ter’’ give rise to accelerations of order 1 cm/sec2, with char-
acteristic frequencies of the order of 10 Hz@11#. All this
indicates that variations in the density will be no more than 1
part in 107 down to reduced temperatures of 1028.

Next, we calculate the thermal drift due to viscous damp-
ing of the vibration-induced motion of the fluid. Inserting
results from Table III~we have utilized the amplitude ofcV
as an estimate of the amplitude ofcP) we find

dT

dt
'1.5310227K sectn~22h2xn!22a

3E v2^a~v!a~2v!&dv. ~6.2!

This effect is absolutely negligible.
Finally, Eq. ~4.7! allows us to see what effect random

linear motion has on the thermal diffusivity. At very low
reduced temperatures the correlation lengthj dominates all
other lengths in the integral and we find

dDT

DT
5

1

9p

kBT

rcDT

L4

Cs
4 S rc

h1
D 3jE v2^a~v!a~2v!&dv

57.56310224t2n~32h2xl!22a13xh

3E v2^a~v!a~2v!&dv. ~6.3!

TABLE II. Relations between various exponents.d is the spatial
dimensionality.

a522dn a

g5n(22h) a

xl1xh542d1h b

aReference@14#.
bReferences@12,13,15,16#.

TABLE III. Numerical values of some of the quantities that are used in the calculations relevant to
3He. Uncertainties are not recorded here but may be found in the cited references.

Quantity Definition Value

n Specific heat exponent 0.63a

h Anomalous dimension exponent 0.0002a

xl Thermal conductivity exponent 0.916b

rc Critical density 0.042 g/cm3 c

kBTc Critical temperature~in cgs! 4.58310216 g cm2/sec2 c

DT5
krc

TccP

Thermal diffusivity 1.9631024t0.75cm
2/sec d

hs /rc Shear viscosity 3.9931024t20.034 cm2/sece

bT Isothermal compressibility 1.8631027t21.18 cm/sec2/g f

Cs Velocity of sound~at low frequency! 3.23104t0.057 cm/secg

j Correlation length 2.5631028t20.63 cm g

cP specific heat at constant pressure 2.533107t21.18 ergs/gKh

aReference@17#.
bReferences@12,13#.
cReference@18#.
dReference@19#.

eReference@20#.
fReference@21#.
gReference@22#.
hReference@23#.

4496 53MARK COWAN, JOSEPH RUDNICK, AND M. BARMATZ



The power of the reduced temperature is'21.5. At no
experimentally achievable value oft will the above effect be
of any importance.

B. Rotations

Here one is hampered by lack of information concerning
the random rotations on the space craft. However, it is pos-
sible to come up with a very rough estimate of the spectral
density, ^V(v)V(2v)&. If we assumeV(v)'v(v)/Ls ,
where Ls is the size of the shuttle, which we take to be
'10 m, then the effects ofV i of transport properties, as
given by Eq.~5.2!, are

E dv
^a~v!a~2v!&

v4Ls
2 . ~6.4!

If we replacev in the integrand above by 10 Hz and the
integrated spectral density of accelerations by 1cm2/ sec4 we
arrive at a fractional effect ofV i of 1 part in 10

10. However,
this estimate is extremely crude, and there may be errors of a
few orders of magnitude. The same estimate applies for the
effect ofV' on the shear viscosity—assuming thath1 and
h̄ are close in magnitude.

As for the consequences on the thermal response of
V' , we find for the fractional change in bothDT andcP ,

dDT

DT
5

dcP
cP

5
cPL

2

cVCs
2E dv^V'~v!V'~2v!&

'1027 sec2t2n~22h!E dv^V'~v!V'~2v!&.

~6.5!

The quantityL in Eq. ~6.5! is the size of the container of
3He, which we take to be 10 cm. Once again, to within the
very large errors resulting from our uncertainties regarding
the spectrum of rotations, we find that there is no observable
effect at an achievable reduced temperature oft51028.

VII. CONCLUSIONS

We have developed expressions defining the effects of
fluctuating linear and rotational accelerations on static and
dynamic phenomena near a liquid-gas critical point. These
expressions are valid in the long-wavelength, low- frequency
limit. The results of this analysis were applied to the proper-
ties of 3He in the vicinity of its critical point. Using
g-jitter data from previous space shuttle flights, we find that
random linear motions expected in future microgravity ex-
periments should not affect measurements of critical point
phenomena to reduced temperatures of 1028. At this time,
measurements of random rotational motions in the space
shuttle are not available. However, using estimates for the
spectrum of random rotations we also find that there will be
negligible effects on critical point phenomena.
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APPENDIX A: HYDRODYNAMICS OF A SIMPLE LIQUID-
GAS SYSTEM NEAR THE CRITICAL POINT

The dynamics of a simple liquid-gas system consists of
the following three equations:~1! Conservation of mass,
which relates the mass density,r(x,t), to the mass current,
j (x,t)5r(x,t)v(x,t),

]r

]t
1“• j50. ~A1!

~2! Conservation of~thermal! energy—under the processes
of convective transport and thermal diffusion,

]q

]t
1“•S qjr D5k¹2

dF

dq
1Q~x,t !. ~A2!

The expressiondF/dq on the right hand side ef Eq.~A2! is
the functional derivative of the total Helmholtz free energy
of the system,F, with respect toq(x,t), the thermal energy
per unit volume. The transport coefficientk is the thermal
conductivity. The last term on the right hand side represents
the rapidly varying contributions to thermal transport that
give rise to fluctuations in the energy density. These terms,
which have a ‘‘white noise’’ spectrum, satisfy the following
version of the fluctuation-dissipation relation in real space:

^Q~x,t !Q~x8,t !&52kBTk¹2d~x2x8!d~ t2t8!, ~A3!

or, in wave-vector–frequency space,

^Q~k,v!Q~k8,v8!&52kBTkk2d~k1k8!d~v1v8!.
~A4!

Equation~A3!, or ~A4!, helps ensure the invariance of the
Boltzmann distribution exp(2F/kBT) under the action of the
system’s dynamics.

~3! Finally, there is the equation expressing the conserva-
tion of momentum in the hydrodynamical system:

] j

]t
1

]

]xi
~ jv i !1q~x,t !“

dF

dq~x,t !
1r~x,t !“

dF

dr~x,t !

5“•sJ1j~x,t !. ~A5!

The first term on the right hand side of Eq.~A5! is the vis-
cous damping force. In more detail,

~“•sJ !k[
]

]xi
ski5h1¹

2vk1F13h11h2G ]

]xk
“•v.

~A6!

The coefficientsh1 andh2 are, respectively, the shear and
bulk viscosities. The final term on the right hand side of the
equation represents the fluctuating forces that act on the ve-
locity field. These forces satisfy the fluctuation-dissipation
relation
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^j i~k,v!j j~k8,v8!&5~2kBTh1k
2d i j12kBT@ 1

3 h1

1h2#kikj !d~k1k8!d~v1v8!,

~A7!

which, again helps ensure that the dynamics leave the Bolt-
zmann distribution invariant.

The conservative contributions to the equations of mass,
energy, and momentum conservation—contained on the left
hand sides of Eqs.~A1!, ~A2!, and ~A5!—also preserve the
Boltzmann distribution by leaving the total free energy in-
variant. These equations thus form a dynamical system that
encompasses both the macroscopic hydrodynamics of the
liquid-gas system and the coarse-grained, thermally driven
fluctuations associated with the microscopic exploration of
phase space mandated by the ergodic hypothesis.

Although the parameter setr(x,t), j (x,t), andq(x,t) is
the most natural basis for the derivation of equations that
satisfy all the conservation laws and invariance principles,
further development of the dynamics, especially as they ap-
ply in the immediate vicinity of the critical point, is greatly
simplified by replacing thermal energy density and mass cur-
rent by thermal energy per unit mass,
e(x,t)5q(x,t)/r(x,t) and the velocity field,v(x,t). In terms
of the new variable set the equations for mass, energy and
momentum conservation are as follows:

]r

]t
1“•~rv!50, ~A8a!

]e

]t
1v•“e5

1

r
¹2

1

r

dF

de
1
1

r
Q, ~A8b!

]v

]t
1~v•“ !v1

1

r Fr dF

dr
2

dF

de
“e G5

1

r
“•sJ1

1

r
j.

~A8c!

This set of equations can be thought of as ‘‘model H’’ critical
dynamics@12,13#, extended to include noncritical dynamical
behavior of the longitudinal component of the velocity field.

Now, if the total free energy can be written

F5E f „r~x!,e~x!…ddx, ~A9!

where f „r(x),e(x)… is a purely local function of the mass
density and energy per unit mass, then the terms proportional
to the derivatives of the free energy on the right hand side of
Eq. ~A8c! can be rearranged as follows:

r“
dF

dr
2

dF

de
“e5r“

] f

]r
2

] f

]e
“e

5“S r
] f

]r
2 f ~r,e! D

1“ f2
] f

]r
“r2

] f

]e
“e

5“S r
] f

]r
2 f ~r,e! D . ~A10!

A straightforward set of thermodynamic arguments leads to
the relationship

r
] f

]r
2 f ~r,e!5P~r,e!, ~A11!

with P(r,e) the local pressure. Thus, if the free energy den-
sity is purely local, then the macroscopic driving term in the
momentum conservation equation is the gradient of the pres-
sure. In fact, nonlocal contributions to the free energy den-
sity, in the form of terms containing spatial derivatives, play
an important role in coupling the heat- and mass-transport
equations.

APPENDIX B: LINEARIZED HYDRODYNAMICS AND
TIME SCALES

Linearized hydrodynamics describe the long-wavelength
low-frequency behavior of a system close to equilibrium. As
the equilibrium state is one in which the free energy is mini-
mized, we write

F5F~r0 ,e0!1E @a~k!e1~k,v!e1~2k,2v!

1b~k!e1~k,v!r1~2k,2v!

1c~k!r1~k,v!r1~2k,2v!#ddk

1O@~r1 ,e1!
3#. ~B1!

The quantitiesr1 and e1 stand for the differences between
the mass density and energy per unit volume and the equi-
librium values of those quantities. If the free energy density
were purely local, then the coefficientsa(k), b(k), and
c(k) would not vary with the wave vectork. Thermodynam-
ics and dimensional considerations mandate the following
relationships between the coefficientsa(0), b(0), c(0), and
standard thermodynamic quantities:

a~0!5
rc

2TccV
, ~B2a!

b~0!5
V~]T/]V!S

T
, ~B2b!

c~0!5
1

2bSrc
2 . ~B2c!

The quantitycV is the specific heat at constant volume, and
bS is the adiabatic compressibility. Standard thermodynamic
formulas yield the following relationships:

a~0!@12b~0!2/4a~0!c~0!#5
rc

2TccP
, ~B3a!

c~0!@12b~0!2/4a~0!c~0!#5
1

2bTrc
2 , ~B3b!

wherecP is the specific heat at constant pressure andbT is
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the isothermal compressibility. For a complete list of the
thermodynamic functions used in this paper see Table I.

Expanding Eqs.~A8! to first order inv, r1 , and e1 we
obtain, in the wave-vector-frequency representation,

2 ivr1~k,v!1r0k•v~k,v!50, ~B4a!

2 ive~k,v!5
2k2k

r0
@2a~k!e1~k,v!1b~k!r1~k,v!#, ~B4b!

2 ivv~k,v!1 ik@2c~k!r1~k,v!1b~k!e1~k,v!#52
h1

r0
k2v~k,v!1kF13h11h2Gk•v~k,v!

r0
. ~B4c!

If we separate the momentum conservation equation into longitudinal and transverse parts, we obtain the following two
relations:

2 ivk•vl~k,v!1 ik2@2c~k!r1~k,v!1b~k!e1~k,v!#52
k2

r0
F43h11h2Gk•vl~k,v!, ~B4d!

2 ivvt52
h1k

2

r0
vt . ~B4e!

We have decomposed the velocity fieldv into its longitudinal
and transverse components, i.e.,v5vl1vt , in which the
transverse component has the propertyk•v(k,v)50.

Note that equation~B4e! for the time evolution of the
transverse velocity field is decoupled from the other equa-
tions in the set, and that the characteristic inverse relaxation
time for the decay of a perturbation of the transverse velocity
field is immediately given by

V t~k!51/t t~k!5
h1

r0
k2. ~B5!

The three remaining equations,~B4a!, ~B4b!, and~B4d!, are
coupled. The frequency of a normal mode, at which they can
be simultaneously satisfied, is given by the solution to the
following dispersion relation:

05 iv~v222c~k!r0k
2!2

2ka~k!

r0
2 k2Fv222c~k!r0k

2

3S 12
b~k!2

4a~k!c~k! D G1 iv
4h1/31h2

r0
k2

3S iv2
2ka~k!

r0
2 k2D . ~B6!

There are three solutions to this cubic equation. One of them
is a pure imaginary solution corresponding to the inverse
relaxation time for thermal diffusion. The two others gener-
ally correspond to the frequency of an acoustic mode. In two
limiting regimes, this mode is well defined. The first of those
two regimes is defined by the relationship

v@
2k2ka~k!

r0
2 . ~B7!

Here, the relaxation time for temperature inhomogeneities, at
constant density, is much longer than the period of the mode.
For this regime Eq.~B6! reduces to

v21 iv
~4/3!h11h2

r0
k222cr0k

250. ~B8!

This is the equation satisfied by a viscously damped, adia-
batic sound wave. If we replacev by the undamped solution
to Eq. ~B7!, the relationship in~B7! is replaced by

2k2ka~k!

r0
2 !A2c~k!r0k[Csk, ~B9!

whereCs is the velocity of an adiabatic acoustic wave. This
relation is satisfied at sufficiently small wave vectors, or suf-
ficiently long wavelengths. The second regime is defined by
the converse of the relationship above, i.e.,

v!
2k2ka~k!

r0
2 . ~B10!

Here the equation is, asymptotically,

v25 iv
~4/3!h11h2

r0
k222cr0k

2F12
b~k!2

4a~k!c~k!G50.

~B11!

Now, the velocity is that of an isothermal sound wave. Re-
placing v by the solution to the undamped equation, we
arrive at the alternate form of Eq.~B11!:

2k2ka~k!

r0
2 @A2c~k!r0F12

b~k!2

4a~k!c~k!Gk[cTk.

~B12!
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HerecT is the velocity of an isothermal acoustic mode. This
relation will hold when the wave vector is sufficiently large,
or the wavelength is sufficiently small.

To find the final root of the global dispersion relation
~B6!, setv5 i z. The resulting equation is a cubic with real,
positive coefficients. There is one real root, and that real root
must be negative. If we anticipate that thez that solves the
equation is of orderk2, for smallk, then the equation satis-
fied by z reduces to

z5
2a~k!k2

r0
2 F12

b~k!2

4a~k!c~k!G1O~k4!. ~B13!

This is the dispersion relation for thermal conduction.

APPENDIX C: EFFECTIVE HAMILTONIAN IN THE CASE
OF TWO SCALAR FIELDS

Because there are two fluctuating fields to take into ac-
count in the calculation ofg-jitter effects, the ‘‘bare’’ effec-
tive Hamiltonian is somewhat more complicated than in the
case of the scalar~i.e., single component order parameter!
f4 model. In this Appendix we review the features, particu-
larly the critical behavior, of a model for simple gas-liquid
critical behavior that incorporates the effects of fluctuations
in both the mass density and the energy density.

The most general case of a theory with two fluctuating
scalar fields, one of which becomes critical at a temperature
T0 , has the following Ginzburg-Landau-Wilson expansion in
the immediate vicinity of the critical point:

H@x~q!,y~q!#5(
q
r ~q!x~q!x~2q!

1
1

N
u (
q11•••1q450

x~q1!•••x~q4!

1
1

AN
v (
q11•••1q350

x~q1!x~q2!y~q3!

1(
q
Ay~q!y~2q!. ~C1!

All neglected terms are higher order in the fluctuating fields
x(q) and y(q), and are irrelevant in the renormalization
group sense. In the vicinity of the critical temperature, the
‘‘bare’’ quadratic coefficientr (q) goes to zero whileA is a
nonzero positive constant.

Fluctuations in the critical fieldx(q) will renormalize the
coefficientsr (q), u, v, andA. Because the quadratic terms
influence the slow dynamics most strongly we concentrate
on r (q) andA. The ultimate form ofr (q) is well known.
Asymptotically

r ~q!→Q22h f „~T2Tc!Q
21/n,q/Q…, ~C2!

where n is the correlation length exponent—
j}(T2Tc)

2n—andQ is an inverse length scale, determined
either by the correlation length~i.e., Q}j21) or by the in-
ternal wave vectorq (Q}q). This is just standard correlation
function scaling.

Fluctuations in x(q) act on the quadratic term
(qAy(q)y(2q) through the ‘‘correlation bubble’’
^C(q)C(2q)&, where

C~q!5
1

AN(
q1

x~q2q1!x~q1!. ~C3!

Because this bubble has the form of an energy-energy corre-
lation function—in the language of the Ising spin model—
straightforward scaling considerations yield for the renor-
malizedA

A5Q2/n2dg„~T2Tc!Q
21/n,q/Q…, ~C4!

with Q again an inverse length scale. This scaling form holds
if the critical exponent for the specific heat at constant vol-
ume,a522dn, is greater than zero, as it is in the case of
the simple gas-liquid critical point. The rescaling ofA is
discussed in more detail in Appendix D.

Now, the two fieldsx(q) and y(q) are linear combina-
tions of the energy densitye(q) and the mass density
r(q). Specifically, we assume

y~q!5ae~q!1br~q!, ~C5a!

x~q!5ge~q!1dr~q!. ~C5b!

Substituting into Eq.~C1!, we obtain the following free en-
ergy in r ande, to quadratic order in the two densities:

F@e,r#5(
q

@a~q!e~q!e~2q!1b~q!e~q!r~2q!

1c~q!r~q!r~2q!#, ~C6!

where

a~q!5r ~q!a21Ag2, ~C7a!

b~q!52r ~q!ab12Agd, ~C7b!

c~q!5r ~q!b21Ad2. ~C7c!

The coefficientsa(q), b(q), andc(q) are dominated by the
contributions ofA in the immediate vicinity of the critical
point, as the approach to zero ofA is much gentler than that
of r (q). Thus, the sound velocityCs51/Absrc vanishes as
ta/2.

The behavior of the combinationa(q)2b(q)2/4c(q) is
another matter entirely. Using Eqs.~C7!:

a2
b2

4c
5ra21Ag22

r 2a2b21A2g2d212rAabgd

rb21Ad2

5r Fa2
bg

d G1OS r 2A D . ~C8!

This combination scales asr (q).

XI. RENORMALIZATION OF THE COEFFICIENT A

In this Appendix, we fill in the details of the renormaliza-
tion of the coefficientA in the Ginzburg-Landau equation,
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Eq. ~C1!. We start by introducing a field,h(q), conjugate to
the noncritical fieldx(q). The portion of the Boltzmann fac-
tor where the exponent is linear and quadratic inx(q) is

expS 2(
q
Ax~q!x~2q!2v

1

AN

3 (
q11•••1q350

x~q1!y~q2!y~q3!1(
q
h~q!x~2q!D .

~D1!

Integrating overx(q), we obtain the following contribution
to the Boltzmann factor, where prefactors to the exponential
have been neglected:

expS 2(
q

h~q!h~2q!

4A
1

iv
2A

3 (
q11•••1q350

h~q1!y~q2!y~q3! D . ~D2!

The second term in the above exponent represents an ener-
gylike coupling to they(q)’s. Integrating out those variables,
we are left with the following quadratic term in theh(q)’s

2
h~q!h~2q!

4A2 v2Qd22/n, ~D3!

where the quantityQ is an infrared momentum cutoff. There
is, then, a Gaussian contribution to the Boltzmann factor of
the form

expS 2
h~q!h~2q!

4A
2
h~q!h~2q!

4A2 v2Qd22/nD . ~D4!

Finally, we reintroduce the variablex(q) by multiplying the
Boltzmann factor by exp@2iSqh(q)x(2q)# and integrating
overh(q). The result is the Gaussian form

expS 2
Ax~q!x~2q!

11v2Qd22/n/AD . ~D5!

Now, if the critical exponent for the specific heat at con-
stant volume,a522dn, is greater than zero, then as
Q→0 the renormalized coefficientA vanishes asQ2/n2d,
while A renormalizes to anonzerovalue if a,0.
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